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Abstract 
 
Cellular computing architectures represent an important class of computation that are 
characterized by simple processing elements, local interconnect and massive parallelism. 
These architectures are a good match for many image and video processing applications 
and can be substantially accelerated with Reconfigurable Computers. We present a 
flexible software / hardware framework for design, implementation and automatic 
synthesis of cellular image processing algorithms. The system provides an extremely 
flexible set of parallel, pipelined and time-multiplexed components which can be tailored 
through reconfigurable hardware for particular applications. The most novel aspects of 
our framework include a highly pipelined architecture for multi-scale cellular image 
processing as well as support for several different pattern recognition applications. In this 
paper we will describe the system in detail and present our performance assessments. The 
system achieved speed-up of at least 100x for computationally expensive sub-problems 
and 10x for end-to-end applications compared to software implementations.  

1 Introduction 
 
ReConfigurable Computers (RCC) have been used to implement image and video processing algorithms in 
many different ways. Traditional image processing implementations are application driven and researchers 
focus on providing faithful acceleration of known algorithms e.g. [1]. Most relevant to this article are 
research efforts which implement cellular image processing algorithms. Cellular image processing 
implementations are architecture driven and researchers focus on extending the architecture to new 
application domains e.g. [2]. The RCC is an ideal platform for exploiting cellular architectures: it is flexible 
enough to implement fine grain, massively parallel cellular algorithms, and, by leveraging commercial-off-
the-shelf (COTS) devices the RCC offers increased design longevity compared to custom solutions. This 
paper describes our recent efforts to provide a RCC framework that broadens the class of cellular algorithm 
applications which are accelerated and provides a path for automated mapping of cellular image processing 
to RCC hardware.  
 
Several different classes of cellular architecture have been proposed in the literature and can be 
differentiated by the particular processing elements and their connectivity. The simplest cellular 
architecture consists of a two-dimensional grid of processing elements. When processing elements compute 
linear functions, this architecture implements one of the most widely used algorithms in image processing: 
convolution. One of the first RCC implementations of convolution was on the Splash-2 [3], with many 
other implementations following [4], [5]. When the processing element computes a logic function the 
cellular architecture is typically called a Cellular Automata [6]. RCC has been used to accelerate Cellular 
Automata since reconfigurable devices first became widely available [7]. RCC-based cellular automata 
have been applied to image processing by several authors [8]. When the processing element combines 
inputs with a linear function and then applies a nonlinear function (similar to a neural network node) the 
architecture is known as a Cellular Nonlinear Network (CNN) [9]. Advocates of this architecture have 
traditionally targeted analog computing devices but more recently have produced RCC implementations as 
a lower cost alternative [10].  
 
A two-dimensional grid of processing elements solves many different problems but it is not sufficient to 
solve a large number of more complex tasks. There are two main ways to extend the basic cellular 
architecture. The first extends the two-dimensional grid to a three-dimensional grid where each layer (a 
two-dimensional grid) interacts with other layers to perform more complex tasks. This multi-layered 
architecture is a good match for image processing where complex algorithms are often decomposed into a 
sequence of primitive operations. RCC has been used to implement multi-layered CNN for retina modeling 
[11]. In previous work we implemented a generalized multi-layered convolution neural network for multi-
spectral image classification [12]. 



 
A second way to extend the basic architecture is to implement a multi-layered hierarchy in which the 
number of processing elements is incrementally reduced in each layer. These multi-scale architectures can 
provide many of the benefits of global communication, while maintaining many of the advantages of local, 
low latency, communication. Multi-scale algorithms are also used widely in traditional image processing. 
Many matching and recognition algorithms use a coarse-to-fine strategy where the results from processing 
at low resolution are used to guide, or narrow processing at higher resolutions. The multi-scale nature of 
image information is also exploited in latest image compression standards which adopt wavelet transforms 
[13]. From a cellular image processing perspective multi-scale architectures have also been investigated for 
quite some time. The Neocognitron was one of the first multi-scale cellular architectures [14] and was 
inspired by biological models of cat retina. Multi-scale (or hierarchical) cellular architectures are now an 
active research area and many researchers are working to apply them to increasingly complex visual tasks 
[15], [16].  
 
Several hardware implementations for traditional multi-scale image processing have been suggested in the 
literature [17] [18]. In these implementations different scales are processed in different execution passes. 
The image is sub-sampled by modifying the memory address generator and the image processing pipeline 
is applied to a reduced data volume. Since data volume typically reduces by a factor of four at each scale 
the total execution time with this approach is only 1.33 times greater than a single execution pass. 
However, if all scales are processed in parallel the design can be 25% faster. For existing multi-scale 
implementations this performance improvement is often negated by the fact that processing units executing 
at reduced scales are not operating at full capacity [15].  
 
We suggest that the flexibility of Reconfigurable Computing can exploit the 25% performance gain, and 
then achieve even higher performance gains by customizing architectures to obtain 100% utilization. This 
approach is particularly well matched to hierarchical cellular architectures for two reasons:  
 

1. Many hierarchical cellular architectures have strong local dependencies between different scales 
[19]. It is possible that without parallel execution of multiple-scales it will be difficult to exploit 
the parallelism within a single scale. 

2. In most hierarchical cellular architectures the number of processing layers is increased as the scale 
is reduced [14]. This means that the total data volume that must be processed does not decrease 
and hence 100% utilization is essential  

 
In this paper we present Hierarchical Architectures for Rapid Processing of Objects (Harpo), a RCC-based 
hardware / software processing framework for hierarchical cellular architectures. The main innovations of 
this framework include: 

• Two levels of configurability per application: the FPGA bit-stream and runtime parameterization 
of hardware circuits.  

• Two execution modes per application: Training via supervised learning and online application. 
• An analyst in the loop Application Graphical User Interface. 
• Instruction Parallelism in RCC hardware 
• Multi-Scale Parallelism in RCC hardware 

 
In Section 2 we introduced the fundamental building block for cellular image processing algorithms: local 
neighborhood functions. We describe the most common operations which we have implemented in the 
Harpo hardware libraries. We then outline the implementation strategies for neighborhood functions and 
motivate the Harpo design choices. In Section 3 we introduce the Harpo system and describe how top-level 
software and hardware components interact as a practical image processing tool. The details of the RCC 
API and implementation are provided in Section 4. Harpo aims to automatically build top-level hardware 
pipelines in VHDL from high level specifications. This requires highly parameterized hardware modules 
with accurate timing and resource utilization estimators which are described in Section 5. The system 
performance is assessed for large multi-layered, multi-scale applications in Section 6.  We conclude in 
Section 7 with a discussion of future work.  
 
 



2 Background 
 
Local neighborhood functions, or sliding window functions, are the fundamental building blocks for 
cellular image processing. These functions are applied at a particular pixel location and their output 
depends on a finite spatial, temporal and spectral neighborhood. Typically the same function is applied to 
all pixel locations in parallel. Neighborhood functions include a large number of traditional image 
processing algorithms. Image functions such as spectral averaging, clipping, thresholding and pixel scaling 
can be considered a subclass of local neighborhood functions without spatial extent. Local neighborhood 
inputs can come from multiple input images such as color channels or spectral dimensions. Neighborhood 
functions can also receive multiple images in time (as in Figure 1) e.g. for finite impulse response filters, 
the neighborhood window has a finite temporal extent and slides through time as the function is applied at 
each step. For infinite impulse response filters the neighborhood window includes a finite number of state 
variables. When a neighborhood function is applied at the edge of the image, some inputs will be 
undefined. In our system we temporarily increase the input image size (pad the input image) by reflecting 
pixel values across each edge. 

 
Figure 1: Example of local neighborhood function inputs and outputs.  

2.1 Typical Neighborhood Functions 
 
Perhaps the most well known local neighborhood function is convolution, defined in Equation 1. A 
multiplicative weight  is associated with each location of the neighborhood  collectively known as lkW , lk,
the kernel K . The output  of the function is the accumulated weighted sum of the kernel applied at jiF ,

each pixel location i, j of the image I : 

Equation 1 
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In many cellular image processing architectures, such as cellular automata and cellular nonlinear networks, 
neighborhood functions update state variables associated with each processing element, or cell. For 
example, in Equation 2 the state variable ( )tF ji ,  is update based on a weighted sum of the input image and 
a weighted sum of the state variables within a local neighborhood. In traditional CNN formulations state 
variable update is a continuous function, but we restrict our attention to discrete time updates suitable for 
RCC implementation.  
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To maintain full precision with fixed point arithmetic, neighborhood functions such as Equation 1 and 
Equation 2 must increase the pixel bit width. This can be a problem when neighborhood functions are 
cascaded. Thresholding is an important class of nonlinear operation in image processing and is often used 
between successive local neighborhood functions. Thresholding can also be used to reduce the data bit-



width. In the Harpo system we implement a flexible piecewise linear thresholding function defined in 
Equation 3 and Equation 4. The input data is first shifted by a constant . Second, an absolute value is 

conditionally applied depending on the value of a Boolean parameter . Third, the data is shifted by a 
second constant . Finally, the data is shifted by 
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Mathematical morphology defines another large family of nonlinear neighborhood functions used 
extensively in image processing. In this case, the weighted sum in Equation 1 is replaced with an order 
statistic. In morphology the kernel K  is also known as a structuring element and it defines which pixels 
are included in the order statistic. The simplest filters are erosion and dilation. Erosion is defined as the 
minimum value pixel from the neighborhood window (see Equation 5) and dilation is the maximum (see 
Equation 6). Each weight  is a Boolean flag and indicates which neighborhood pixel values are 
included in the maximum (or minimum) operation. Another common morphological filter is the median 
filter. Morphological functions are closely related to digital logic functions. They avoid multipliers and can 
be efficiently implemented with RCC [20].  
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2.2 Implementing Neighborhood Functions  
 
Local neighborhood functions demand exceptionally high bandwidth to data. For example, for a modest 3 
band 256 pixel wide by 256 pixel high color video sequence, a (typical) 7 by 7 spatial neighborhood size 
and a 3 frame temporal window, would require access to 441 pixel values at each image location to 
implement the most general neighborhood function. To obtain real time processing rates at 30 frames per 
second would require access to approximately 870 million pixels per second. Most image processing 
applications are composed of large numbers of local neighborhood functions and therefore the 
communication bandwidth requirement quickly exceeds what general purpose computing can provide. 
Fortunately, due to the regular nature of the communication across the image array, there are also many 
opportunities to optimize the bandwidth. Reconfigurable computers are ideal platforms to tailor high-
bandwidth memory hierarchies and implement algorithm specific address generation. There are two main 
ways that local neighborhood functions are implemented:  
 
Data Parallel: Many implementations exploit the parallel nature of cellular array directly by implementing 
a large number of processing elements, each associated with a specific pixel location. At the extreme of this 
approach all pixels are processed in parallel, each cell has direct access to neighboring pixels at all times, 
and the entire array is updated in 1 clock cycle. This implementation is illustrated on the left in Figure 2. 
RCC can implement a programmable, maximally parallel implementation of a cellular array, but can only 
efficiently implement a small numbers of cells. Large arrays require time multiplexing, and the time taken 
to initialize the array and communicate results is typically much larger than the computation time. 
 



Instruction Parallel: When implementing synchronous systems (as we are in RCC) it is also possible to 
achieve parallelism via pipelining. At the extreme of this approach only one cell is implemented for an 
entire array and each pixel location within the array is updated sequentially.  The output stream from the 
first array is then directly tied to the input stream of a second array and therefore a long chain of 
instructions can be executed each clock cycle. Each instruction must access its local neighborhood at the 
same time and therefore image data must be cached within the computing device in large shift registers. 
This implementation is illustrated on the right in Figure 2.  

 
Figure 2: Data versus Instruction Parallel  

We have described the two extremes of a pixel parallel versus instruction parallel design space. In practice 
any combination of these two extremes can be used. The optimal design point is dictated largely by the 
memory bandwidth that is available both on-chip and off-chip. Most modern FPGA devices now offer large 
quantities of on-chip memory which is ideal for implementing the large shift registers required in 
pipelining. By exploiting internal memory bandwidth, an instruction parallel design places less demand on 
external memory bandwidth (only 1 pixel / clock cycle is required). The instruction parallel approach has  
some inefficiency due to pipeline latency and edge conditions. For an image W  pixels high by W pixels 
wide, each instruction introduces a Wα latency, where α is proportional to the local neighborhood size. 
Also, for each neighborhood instruction the valid output image is reduced in size by α pixels due to edge 
conditions. For pipelined instructions this means approximatelyP P Wα pixel calculations are invalid. 
The total execution time for the pipeline is and therefore for practical image sizes,W , the 
impact on performance is usually not significant.  

2W ~ 1000

 
The Harpo framework adopts the instruction parallel approach at the extreme and reads one pixel location 
from memory each clock cycle. This read includes multiple pixels, but each pixel comes from a different 
input image. The main motivation for this approach is to accelerate extremely large networks where the 
external bandwidth would be completely utilized by a large number of input images. Depending on the 
application this design choice may not be optimal and external bandwidth and computational resources may 
go unused. In this case it would be relatively straight forward to generalize the Harpo system to include 
data parallel pipelines.  
 



3.0  System Overview 
An overview of the Harpo system is shown in Figure 3.  

 
Figure 3 – Harpo system overview 

Harpo operates in two modes: run-time mode and training mode. In the run-time mode Harpo is applied as 
an online system. Video frames are loaded sequentially and passed to the system one at a time. After a 
fixed number of frames latency (the latency depends on the application) Harpo will start producing an 
output video stream. The output is a video overlay where high pixel values indicate objects or features of 
interest e.g. particular vehicles, land cover etc. Harpo can also produce additional meta-data such as 
predicted locations, percentage cover etc. which accompanies the output video stream. Figure 3 shows the 
typical video input and output frames for a vehicle segmentation task.  

In the training mode Harpo receives additional training images. An example training image is shown in the 
bottom left of Figure 3. These image overlays are associated with a number of frames in the input video 
stream. During training mode the Harpo system uses supervised learning methods to minimize error 
between the output overlays and the training images. Training image overlays are typically generated by 
the user with the Harpo Graphical User Interface (GUI) shown in Figure 4. The GUI allows the user to 
navigate video sequences and using a collection of Paint Program tools (like paint brush and polygon), 
specify features of interest in green and non interesting features in red. For the two class classification 
problem features of interest are indicated with green markup and examples of the non-feature (or 
background) are indicated by red markup. Pixels that are not marked-up, and left black, are assumed ‘don’t 
care’ and do not contribute to error during training. The user can provide training mark-up for as many 
frames as they wish for any particular problem. The Harpo system translates red and green mark-up into +1 
and -1 class labels for a standard classification problem. 



 
Figure 4: Screen-shot of video mark-up tool used to specify features of interest.  

 
 
Harpo provides a very flexible collection of software and hardware components to solve feature extraction 
problems. The system depends upon a tight coupling between a host processor and the RCC to implement 
these components. The host processor is responsible for image and video file I/O, control and 
synchronization of the RCC. The host processor also maintains a library of software modules which 
provide bit-accurate implementations of all Harpo hardware components. At any point in time the host 
processor can execute any network entirely in software, but typically, a network will be implemented with 
some combination of software and hardware components.  

 
Figure 5: Harpo network example. a) Output images from processing layers and b) 

hardware components used in RCC sub-network. 
 
Figure 5 presents a typical cellular algorithm used to solve feature extraction problems. The basic building 
block is a two-dimensional grid of processing elements which we call a processing layer, or, layer. 
Processing layers can be implemented in software or hardware and include, amongst other things, the 



neighborhood functions described in Section 2.1. The output images produced by each processing layer are 
shown in Figure 5a. The first four layers, executed in software, calculate an intensity image and three 
intensity normalized color images. These layers require square root and division. The four output images 
are sent to the RCC and the remainder of the network is executed in hardware. The partitioning between 
RCC and software is currently performed by the user. Figure 5b shows the hardware sub-network in more 
detail. First four different convolutions (linear neighborhood functions) are applied. Each has a 9 by 9 
window. Second a threshold operation is applied to each convolution output. Finally, the four thresholded 
outputs are combined with a 4 input linear function and then a final threshold applied. The RCC 
implementation of these components is described in detail in Sections 4 and 5. 
 
The RCC and software components are tailored for a particular application using two levels of 
configurability. The first level of configurability, shown at the top in Figure 3, is the Specification File. The 
specification file defines the solution space for a particular problem class e.g. vehicle detection or terrain 
type. The second level of configurability, shown at the bottom of Figure 3, is the Parameter File. The 
parameter file defines the additional parameters and settings that solve problem instances e.g. truck versus 
car detection. For a particular specification file, there are multiple parameter files, each tuned to particular 
features of interest. Parameter File values are usually derived using supervised learning algorithms.  
 
One of the main motivation for the two levels of configurability is the long reconfiguration times associated 
with large RCC devices (84us for the Virtex 2 Pro 100 FPGA). Different specification files will typically 
use different RCC bit-streams. Different parameter files use the same bitstream. The 1st level of 
configurability requires VHDL to be generated and synthesized using vendor tools, and hence, is performed 
offline. Typically these bit-streams are loaded once when Harpo is first initialized. The 2nd level of 
configurability involves writing on-chip registers, control lines and other types of programmed flexibility. 
The 2nd level of configurability is very quick and is performed online as the application is running. The two 
levels of configurability are illustrated in Figure 6.  

 
Figure 6: The two-levels of configurability 

 

In the next two sections we describe how the two levels of configurability are both expressed and tailored 
in more detail.  
 
3.1 Network Specification File  
 

The Specification file is a compact description for large and complex multi-layered cellular networks. A 
processing layer can receive an arbitrary number of images as input and produce an arbitrary number of 
images as output. The connectivity between layers define data paths that pass image planes or arrays of 
image planes from one layer to the next. We use a simple scripting language called Scale Language (SL) to 
specify the particular layers and the data paths. In its present form, SL uses a simple s-expression syntax. 
This is a matter of convenience for parsing, and could easily be replaced by a more procedural syntax with 
infix notation. The important features of the language are: 

• declare data planes and vectors of data planes 
• define new composite layers with parameters and data planes as input and  data planes as output 
• use arbitrary arithmetic constructs, especially to index vectors of  data planes 
• replicate arbitrary objects in space and time 



• concisely express hierarchical pipelines.  
 
At the most basic level, the language has constructs to allocate image planes and to instantiate and 
interconnect layers using those planes. There are two types of input for each layer: data planes and 
parameters. Each layer returns data planes as output. A simple layer such as image differencing takes two 
input planes and returns an output plane. More complex layers might take vectors of image planes as input 
in addition to various parameters, and return vectors of image planes. Often a layer might accept and/or 
return a vector of arbitrary length, where each component of the vector is itself an image plane.  Parameter 
semantics of course depend on the layer. Some layers (eg. Linear) accept a trainFlag keyword that 
indicates whether the layer should find coefficient values via learning when the system is in training mode.  

SL allows the user to define new layers as compositions of pre-defined and primitive layers. Figure 7 
shows the definition of a new simple-pipe1 layer. The keywords input and output indicate data 
planes as input or output respectively. The keyword local signifies data planes local to the operator. 
Vectors of data planes can also be declared, as illustrated with the local variable pipe that is a vector of 
four planes indexed from 1 to 4. In this example, three pre-defined layers are instantiated, two Linear layers 
and a Threshold.  

(def simple-pipe1 
   (input mem-in) 
     (output mem-out2) 
     (local (pipe 1 2)) 
     (Linear (input mem-in) (output (index pipe 1)) (trainFlag 1)) 
     (Linear (input (index pipe 1)) 
             (output (index pipe 2)) 
             (paramType     DoG) 
             (windowSize    11) 
             (centerWidth   0.05) 
             (surroundWidth 1.0) 
             (DoGRatio      10.0)) 
      (Threshold (input (index pipe 2)) 
                 (output mem-out2) 
                 (trainFlag              1) 
                 (threshType             linear)) 
      ) 

Figure 7: Specification example for a simple pipe 

As the example shows, some layers are extremely versatile, taking a large number of optional parameters. 
The first instance of Linear simply specifies input and output planes along with the trainFlag set to 1, 
whereas the second instance is much more tailored. It specifies a paramType (parameter type) of DoG 
(Difference of Gaussians), a windowSize of 11, as well as several additional parameters. This example 
also illustrates how the operators are interconnected. The first instance of Linear takes as input the 
simple_pipe input plane called mem-in. Its output is pipe[1], which is input to the second instance 
of Linear. Similarly, the second Linear outputs pipe[2], which in turn is input to Threshold. 
The Threshold instance also uses indexed data planes and operator-specific parameters. 

To allow the user to specify a collection of layers, the Scale Language includes a replicate construct, 
as illustrated in Figure 8. In this example, a new layer increase-scale-unit is defined. This operator 
takes as input a parameter n as well as a data plane mem-in and returns a data plane mem-out1. It has a 
local vector mem-loc of data planes. The size of the vector is n, the input parameter to the layer, allowing 
the size of the vector to be specified by any layer that instantiates increase-scale-unit. Different 
instantiations with different values for n will result in different sizes of mem-loc. The set statement is 
an assignment setting mem-loc[0]= mem-in. The replicate statement takes as the first argument a 
range of replications. The first parameter (i in the example) is an identifier that is bound to each index in 
the replication range.  Following is a list of layers to be instantiated, each of which is replicated over the 
range. In the example, there is a single layer incr-scale that takes as input mem-loc[i-1] and 
returns mem-loc[i]. This is a concise definition of an arbitrary size increase-scale-unit. The example 



illustrates a spatial replication. Replication can also occur in the time domain by replacing the keyword 
replicate with loop. 

(def increase-scale-unit (param n) 
     (input mem-in ) 
     (output mem-out1 ) 
     (local ( mem-loc 0 n)) 
 
     (set (index mem-loc 0) mem-in) 
     (replicate (i 1 n)  
                (incr-scale  
                 (input (index mem-loc (- i 1)))  
                 (output (index mem-loc i)) 
                 ) 

) 

Figure 8: Specification example for Replicate 

Harpo assumes a feed-forward pipeline and will execute layers in the order they appear in the SL 
specification. In video applications the Harpo run-time system loads a frame and associates the data with 
the top-level memIn identifier. The network is executed and Harpo then writes out the images referenced 
by the top-level memOut identifier. To build networks that exploit the time domain and/or introduce state 
variables the user must explicitly instantiate a predefined layer called a Buffer. Figure 9 shows how the 
Buffer layer is used to implement a three frame temporal filter. State variables can be implemented in a 
similar way by using a layer’s buffered output as one of its inputs. Since temporal processing is entirely in 
the hands of the user it can be customized for various modalities and data types without adding complexity 
to the Harpo run-time system.  

(def FIR-filter (input memIn) (output memOut) 
(local temp) 
(Linear (input memIn) (output memOut) 

 (weights ~1))  
(Buffer (input (index memIn 1)) (output (index memIn 2))) 
(Buffer (input (index memIn 0)) (output (index memIn 1)))) 
 
(def main-net (input memIn)(output memOut) 
(evolve (FIR-filter (input memIn) (output memOut)))) 
 
(local (memTaps 0 2)) 
(local memIn) 
(local memOut) 
(set (index memTaps 0) memIn) 
(main-net  (input memTaps) (output memOut)) 

Figure 9: Specification example for evolve 

 
3.2 Network Parameter File 
 
The second level of configurability tailors a network specification for a particular problem instance by 
modifying layer parameters at run-time. For example, a Linear layer has a number of integer weights 
defined in Equation 1 and a morphological layer has Boolean valued weights defined in Equations 5 and 6. 
Parameters have default values but can also be given specific values via the Specification file. 
Alternatively, parameter values can be derived in training mode. Harpo supports two types of training: 
layer specific local learning and general purpose global learning. Local learning algorithms must be 
provided by the user who develops the layer and will typically affect a predefined subset of parameters. For 
example, for one Linear layer in Figure 5 the trainFlag keyword is TRUE and weights will be 
optimized with Fisher’s linear discriminant. There are also several general purpose training algorithms 
defined in the Harpo runtime system which can be applied to any type of layer. For example, in Figure 9, 
the evolve keyword indicates that free parameters found in the FIR-filter sub-network should be 
optimized with an Evolutionary Algorithm. Harpo uses the GAlib genetic algorithm package, written by 
Matthew Wall at the Massachusetts Institute of Technology for these algorithms. Harpo also implements 



the general purpose Adaboost algorithm [21]. It is used in a similar way to evolve and is accessed with 
the boost keyword. A useful strategy for optimizing network parameters is to use a combination of 
global learning and local learning algorithms. For example, for each evaluation of the GA in figure 5, 
parameter values for the four convolutions and threshold functions are randomly generated, applied to the 
input image, and then combined with a Fisher discriminant and a minimal error threshold. A population of 
20 candidates evolved for 20 generations (with a simple generational GA) to obtain the images shown in 
Figure 5a.  
 
4.0 Hardware Overview 
 
We have provided a broad overview of the Harpo system as an application and have outlined how cellular 
algorithms can be specified and optimized to solve particular tasks. In this section we provide more detailed 
description of how the RCC interacts with the system. In our prototype the host processor is a conventional 
desktop workstation and the RCC is attached through a global PCI bus. This may not be the best 
configuration and to support alternatives we have defined both hardware and software application 
programming interfaces (API).  

4.1 Hardware API 
 
The hardware API abstracts the underlying RCC and defines interfaces for top-level modules that are 
customized for each application. A block diagram of the API components is illustrated in Figure 10.  
  

 
Figure 10: Top level hardware architecture 

 
The RCC memories are interfaced to the Network as one large dual port memory. Each clock cycle the 
Network expects new data on data_in and produces new data on data_out. The address generator 
provides the same read address to all memories each clock cycle, which typically corresponds to raster scan 
order. The only deviation from sequential access is when the address generator is configured (via control 
registers) to automatically pad the input images as described in Section 2. The address generator also 
provides the same write addresses to all RCC memories each clock cycle. As the output images are 
produced only valid, non-padded data is written to memory. When padding is used the address generator 
also introduces latency into the pipeline to ensure that memory writes do not overwrite the memory 
contents before they are read.  
 
The Harpo hardware system currently supports the WildStar II Pro (WS2Pro) Reconfigurable Computer 
from Annapolis Microsystems (AMS). The WS2Pro has two Xilinx Virtex2P100-5 FPGAs with six 8 



Mbyte quad data-rate SRAMs surrounding each chip providing a total dual port bandwidth of 192 bits per 
clock cycle. The board communicates to the host workstation via a 64 bit, 66 MHz PCI bus. The Harpo 
system could be easily retargeted to other SRAM based RCC platforms; however SDRAM is not currently 
supported. The resources used to implement the Harpo hardware API on the WS2Pro are shown in Figure 
11 . This includes the address generator, memory interfaces, control registers, and the DMA interface. All 

resource utilization results were obtained via Synplify’s Synplicity v8.0 synthesis and Xilinx’s ISE 
Foundation 7.1 place and route.  

 Resources % Usage 
On-chip RAM 4 / 444 Blocks 3 
Logic 3187 / 44096 Slices 7 

Figure 11: Resources used to implement the Hardware API on the WS2Pro RCC 

 
4.2 Software API 
 
We also define a software API for the Harpo system that abstracts the underlying host-RCC interface. The 
interface is defined as a C++ object and provides methods for initializing bit-streams (the 1st level of 
configurability) and writing parameter values (the 2nd level of configurability). Methods are also provided 
to read and write image data, configure address generation and control pipeline execution. The typical 
application control flow is illustrated with pseudo code in Figure 12. RCC initialization and bit-stream 
loading is typically performed once at application start-up. Large volume image transfers to and from the 
RCC are via DMA. For each image the host may execute the hardware pipeline several times. Each time 
different parameter values may be written from the host to configure the pipeline differently.  

Reset and initialized RCC 
Write control registers 
For f = 1 to total_number_of_frames 
   Write image data to RCC 
   For i = 1 to number_of_passes 

 Write parameter values 
 Initiate processing 
 Wait until done 

                     End For 
   Read image data from RCC 

                 End For 
Close RCC 

Figure 12: Harpo Host Pseudo Code: Applications Control Flow 

 
The performance measurements for transactions across the 64-bit / 66MHz PCI bus are shown in Figure 13. 
 

 Mbytes/sec 
DMA Read 223 
DMA Write 298 
Register Read / Write 256 
Figure 13: WS2Pro RCC communication performance measurements  

5.0 Hardware Components 
 
In the next few sections we will describe the Harpo library components used to build the Network and 
Parameter modules. Harpo aims to automatically generate Network and Parameter modules from 
hardware library components. The most important design consideration was therefore modularity and 
flexibility. At the top-level the library is parameterized by:  

       
image_width   = image width  



pad_width        = number of pixel rows/columns used to pad image 
bit_width    = input data bit width  

 
These quantities are fixed at run-time. The image_height can be changed at run-time and is limited 
only by the RCC memory depth. For the WS2Pro the SRAM depth is 2Mwords which means the maximum 
image height is 2M image_width  pixels. We use two’s complement fix bit representation throughout 
the design. The hardware sub-components can be roughly divided into four different types. The first deals 
with the local memory management required by neighborhood functions. We have developed a versatile 
and programmable window module which can be instantiated and used for any local neighborhood 
function at any scale. This module is described in Section 5.1. The second type of component includes 
specific neighborhood functions, such as convolution and thresholding, and will be described in Section 
5.2. The third type of component, described in Section 5.3, is used for data sequencing and includes down 
sampling and up sampling. The fourth component is used in the Parameter module and provides the 
interface between the Network module and the host processor to provide run-time configurability.  
 
5.1 Neighborhood Memory Access 
 
Figure 14 provides a block diagram of a pipelined neighborhood memory access for 3 by 3 neighborhood 
convolution. The image input arrives one pixel per clock cycle in raster scan order into three pipelined 
registers: . The output from is input to a shift register, implemented on-chip, whose 

length is equal to image_width - 3. The strategy is repeated for the second row and the second shift 
register output fed into a final row of neighborhood registers .  

3,3 3,2 3,1P ,P ,P 3,1P

1,3 1,2 1,1P ,P ,P

 

 
 

Figure 14: Interface for the neighborhood memory access.  
 

The latency for the window buffer is given by Equation 7. 

 
( ) ( )( )
( )

* 2

2 1
winL =

+ +

image_width window_width-1

window_width-1
  Equation 7 

Harpo aims to cascade multiple neighborhood functions, each operating at different image resolutions, 
within a single pipeline. This means different parts of the pipeline process different quantities of image 
data. Parts of the pipeline that are applied to the highest resolution operate at 1 pixel per clock cycle and 
parts of the pipeline applied to reduced resolution data will have multiple clock cycles available per pixel. 
Figure 15 illustrates how sub-sampling affects the image pixel streams. Numbers in both images represent 
pixel values. Sub-sampling selects the upper left pixel from each group of four, and duplicates its value in 
both horizontal and vertical directions. 
 



 
 
The cycles in which data is duplicated can be used to compute multiple instructions per pixel. We 
generalize the pipelined neighborhood memory access to exploit this redundancy. This approach is 
illustrated in Figure 16 for an image reduced by a factor of two. This component is an array of carefully 
allocated shift registers made from flip flops and block RAM.  Small shifters separate adjacent pixel values 
while block RAMs are used to delay data across the width of the image. This architecture produces a new 
window of data for a sub-sampled image each clock cycle.   

 
The latency for this generalized window buffer is given by Equation 8. 
 

( ) ( )
( )( )

* 2

2 1
winL =

+ +

sample_rate* image_width window_width-1

sample_rate* window_width-1
 Equation 8 

 
The interface for the window module is shown in Figure 17. It is a versatile, highly parameterized 
component which can be used within a multi-scale pipeline without delay lines or state machines. The 
hardware that is generated depends on the values of the generic parameters that must be known at compile 
time. Sample_rate sets the size of the internal shifters which changes the scale of the data which is 
routed to the output ports and operated on by either a compute function or data sequencer.   
 

 

 
 

Figure 16: Block diagram of multi-scale window memory access.  

 

 
Figure 15: Block diagram of multi-scale window memory access.  



component window 
  generic ( 
    window_width   : natural; 
    window_height  : natural; 
    sample_rate    : natural; 
    opt            : nautral); 
  port ( 
    clk            : in std_logic; 
    reset          : in std_logic; 
    run            : in std_logic; 
    data_in_valid  : in std_logic; 
    data_out_valid : out std_logic 
    data_in        : in std_logic_vector(bit_width-1 downto 0); 
    data_out       : out std_logic_vector(window_width*window_height*bit_width-1 downto 0); 
  ); 

end component; 

An image that has been down sampled by a factor of two has a data redundancy factor of four. In practice, 
the memory windows that will be propagating redundant data can be identified at compile time. Opt is a 
parameter that selects one of two implementation optimizations which can minimize the amount of logic 
and block RAM used for shifting redundant data.  In the first optimization a by-sample_rate clock 
divider is used to slow the propagation of pixel data thus cutting the amount of necessary Block RAM by a 
factor of sample_rate. The second optimization works on the same principle. A by-sample_rate 
clock division in combination with a special type of data sequencer reduces the amount of necessary block 
RAM by sample_rate*sample_rate.  
 
Figure 18 shows the resource and post place and route timing of a standard (no optimization) 3 by 3 
window while varying data bit_width. Figure 20 shows how the window component scales as a 
function of two other generic parameters, window dimension and opt. For these experiments we fix 
sample_rate=2. A target frequency of 100 MHz and the default placement effort was used. Logic 
utilization scales linearly as a function of the window size while block RAM scales linearly with the 
window dimension. 
 

 
5.2 Neighborhood Functions 
 
The window component is connected to at least one pipelined neighborhood function such as convolution, 
thresholding or morphology. These functions must adhere to the standard interface defined in Figure 19.  

Figure 17: Interface for generalized window component. 

8 bits 16 bits 32 bits
clk frequency 116 MHz 109 MHz 105 MHz
slices 224 346 590
blockRAM 1 2 4  

Figure 18: Resource utilization timing of window component as bit width is increased. 

 
component function 
  port ( 
    clk       : in std_logic; 
    valid_in  : in std_logic; 
    valid_out : out std_logic; 
    param_in  : in std_logic_vector(param_width-1 downto 0); 
    data_in   : in std_logic_vector((num_inputs*bit_width)-1 downto 0); 
    data_out  : out std_logic_vector(result_width-1 downto 0) 
  ); 
end component; 

Figure 19: Standard interface for a neighborhood function. 
 
 



opt 0 (standard) opt 1 (reduce by 2) opt 2 (reduce by 4)
3x3 clk frequency 116 MHz 106 MHz 57 MHz

slices 224 168 114
block RAM 1 1 1

4x4 clk frequency 123 MHz 125 MHz 51 MHz
slices 375 257 141
block RAM 2 1 1

5x5 clk frequency 110 MHz 107 MHz 70 MHz
slices 566 376 259
block RAM 2 1 1

6x6 clk frequency 109 MHz 101 MHz 61 MHz
slices 800 652 303
block RAM 3 1 1

7x7 clk frequency 102 MHz 111 MHz 66 MHz
slices 1076 693 432
block RAM 3 2 1

8x8 clk frequency 110 MHz 103 MHz 57 MHz
slices 1534 890 496
block RAM 3 2 1

9x9 clk frequency 100 MHz 101 MHz 52 MHz
slices 1758 1118 661
block RAM 4 2 1

10x10 clk frequency 101 MHz 101 MHz 53 MHz
slices 2211 1418 743
block RAM 4 2 1

Figure 20: Resource utilization and timing of window component as 
window width increases and optimizations are applied.  

5.2.1 Convolution 
 
The convolution function must compute a weighted sum of the input data every clock cycle. The library 
module currently exploits the hard MULT18x18s multiplier cores available in the Virtex2Pro. If the 
bit_width for the design is 18 bits, or less, then num_input multipliers will be used. If the bit_width 
is larger then multiple cores are cascaded for each multiplication. The latency for the convolution function 
is given by Equation 9. 
 

 ( )( )2log 1convL Ceil= +num_inputs    Equation 9 

 
Excluding multiplications, resource usage is dominated by the adder tree and pipeline registers. Based on 
Register Transistor Logic (RTL) diagrams of the function unit we estimate resource utilization by Equation 
10. This equation is based on the assumption that logic and registers are not packed into the same CLB.  

( )( )( )2log2 1Ceil
convSlices = −num_inputsbit_width num_inputs+  Equation 10 

5.2.2 Morphology 
 
The morphological function implements a comparator tree each clock cycle. The latency for the function is 
given by Equation 11.  

( )( )2logconvL Ceil= num_inputs    Equation 11 

At each node in the comparator tree two inputs are compared and one selected. The module is 
parameterized to select either the maximum or the minimum based on a flag. A binary weight associated 
with each input selects between either the input data or a constant value. Resource usage is estimated by 
Equation 12.  



( )( )( )2log2 1Ceil
morphSlices = −num_inputsbit_width num_inputs+  Equation 12 

 
5.2.3 Threshold 
 
The offsets, shifting, range correction, absolute value and clipping described in Section 2.1 are collectively 
called the Threshold function. The function has a latency of 4 and the resource usage is estimated by 
Equation 13.  

12.threshSlices = bit_width    Equation 13 
 
5.3 Data Sequencing 
 
We have described the basic computational units involved in the multi-scale pipeline. In this section we 
describe the additional components which are used to manipulate the pipeline data streams and enable 
flexible implementation of a large variety of network topologies.  
 
5.3.1 Down Sampling 
 
The down_sampler is used to reduce the resolution of an image by a factor sample_ratio which is 
fixed at compile time. This factor is restricted to powers of two. The down_sampler is a preceded by a 
window module with neighborhood size sample_ratio by sample_ratio. The function uses two 
levels of multiplexing to route window input data to the output port based on comparators and a state 
machine. Latency is two clock cycles for all possible instantiations of this component. 
 
Figure 21 shows results from the synthesis of instantiations of the down_sampler module with ranging 
values for bit_width and sample_ratio. While the clock frequency remains relatively constant 
across the different instantiations, the logic requirement scales linearly as a function of the size of the 
source window. 
 

sample_ratio = 2 sample_ratio = 4 sample_ratio = 10
bit_width = 8 138 MHz, 52 slices 153 MHz, 85 slices 153 MHz, 356 slices
bit_width = 16 138 MHz, 81 slices 138 MHz, 144 slices 138 MHz, 699 slices
bit_width = 32 138 MHz, 141 slices 138 MHz, 269 slices 138 MHz, 1378 slices

 Figure 21: Synthesis results for down_sampler component as 
sample_ratio and bit_width are varied 

 
5.3.2 Stream Splitting  
 
The splitter module de-interlaces a time-multiplexed image stream into independent, redundant image 
streams. For example, in Figure 22 an image has been down sampled by a factor of two by the 
down_sampler component. The image stream is input to a window function which computes four 
functions and produces four unique results for each pixel. The splitter module takes the  time-
interleaved result image as input and produces 4 independent output images. The module introduces 
redundancy into each stream so that they can be easily cascaded into subsequent window functions.  
 



 
Figure 22: Block diagram of multi-scale window memory access.  

 
Latency for the splitter component is two clock cycles for all possible instantiations of this component. 
Figure 23 shows synthesis results for instantiations of the splitter module with ranging values for 
bit_width and sample_ratio. Unlike the previous module, the maximum clock frequency 
decreases as the bit_width and sample_ratio increased.  
 

sample_ratio = 2 sample_ratio = 4 sample_ratio = 10
bit_width = 8 140 MHz, 110 slices 125 MHz, 307 slices 79 MHz, 2458 slices

bit_width = 16 128 MHz, 173 slices 113 MHz, 399 slices 64 MHz, 3064 slices

bit_width = 32 115 MHz, 303 slices 101 MHz, 713 slices 61 MHz, 4317 slices
 Figure 23:. Synthesis results for splitter component as sample_ratio 

and bit_width vary. 

 
5.3.3 Stream Mixing 
 
The mixer module is the inverse of the splitter module. A time interleaved image stream is created 
by sampling a number of independent image streams. The internals of this component are very similar to 
the other two sequencers and the added latency is two clock cycles. If the resolution of multiple image 
streams is to be reduced in parallel it is possible to combine the functionality of the down_sampler and 
and mixer components. We will see an example of this in Section 6. This lowers resource utilization and 
reduces routing. As of the current version of Harpo, this module has yet to be fully parameterized. Figure 
24 indicates that clock rate is not affected by bit_width. 
 

sample_ratio = 2
bit_width = 8 138 MHz, 34 slices
bit_width = 16 138 MHz, 42 slices
bit_width = 32 138 MHz, 58 slices  

Figure 24: Synthesis results for mixer component as bit_width varies. 

 
5.3.4 Up Sampling 
 
The final component required for most multi-scale cellular algorithms is up-sampling. There is no 
specialized hardware component for up-sampling since it can be implemented with the existing window 
component. Up-sampling is restricted to powers of two and the default implementation implements linear 
interpolation. 
 
5.4 Parameter Module 
 
The fourth and final type of hardware component is the Parameter module. Each neighborhood function 
has a number of adjustable parameters which can be configured at run-time. Parameters are stored as a 
collection of sub_param sub-components, each associated with a particular neighborhood function. 



When the sub_param component is associated with a time-multiplexed pipeline component the sub-
components are responsible for shifting multiple parameters in sequence depending on the 
sample_ratio.  

 
Figure 25: Block diagram of the Parameter module  

A block diagram of the Parameter module is shown in Figure 25. The host processor crosses the bus and 
FPGA clock domains with a dual ported Block RAM. Through the Parameter state machine the host 
processor has the ability to reset or load any sub_param component. The state machine arbitrates 
between sub_param instantiations via a unique parameter_id which is assigned at compilation. The 
architecture enables as many sub_param components as are required for a particular design. The primary 
resources required by each sub_param component are a sample_ratio number of shift-registers, each 
of which is sample_ratio bits long. The width depends on the parameter width associated with each 
neighborhood function. Figure 26 shows results from place and route experiments as the sample_ratio 
and total number of parameter bits were varied. The clock rate was consistently above 100MHz.  

 

sample_ratio parameter bits frequency slices
1 20 104 MHz 103
1 40 108 MHz 144
1 60 107 MHz 183
1 80 122 MHz 224
2 20 105 MHz 221
2 40 117 MHz 338
2 60 118 MHz 478
2 80 118 MHz 596
3 20 105 MHz 301
3 40 131 MHz 445
3 60 130 MHz 579
3 80 134 MHz 724
4 20 131 MHz 384
4 40 128 MHZ 565
4 60 130MHz 746
4 80 120 MHz 925  

Figure 26: Synthesis results for parameter component showing how timing and resource 
utilization scale with sample_ratio and the total number of parameter bits. 

 



6 Application Case Studies 
 
We have described all hardware components implemented within the harpo framework and provided our 
assessment of component performance. In this section we describe two practical applications that have been 
implemented within the Harpo framework. The applications illustrate how components are combined 
within larger networks and they allow us to better quantify the performance of hardware sub-components 
when they combined into a larger RCC design. The networks are applied to practical pixel classification 
problems illustrated in Figure 27. The input is a single 704 by 480 three color image from airborne video 
camera (left) and contains three people and two vehicles. The first problem (middle) is to segment pixels 
belonging to a particular person. The second, more difficult problem (right) is to segment pixels associated 
with all people. In the training overlays white indicates pixel of interest, gray indicates background pixel 
and black indicates no training data for that pixel. 

 
Figure 27: 3 color training image and training overlays for one individual (middle) and all individuals (right).  

 
6.1 Application I 
 
The first application was illustrated in Figure 9 of Section 3.3. The network was optimized for the first 
training problem in Figure 27. The network has both software and hardware components. The largest 
hardware components (in terms of resources) are four large 9 by 9 convolutions. For each convolution there 
are 81 8-bit parameter values stored within a sub_param component. Because convolutions are applied at 
the maximum resolution the sample_ratio is one and no parameter time-multiplexing is required. All 
parameter values are sent to the Parameter modules at start-up and remain constant. Resource utilization 
for the network is summarized in Figure 28. 
 

 Number of Resources % Utilization 
Observed   
MULT18x18s 328 73 
RAMB16s 12 3 
Slices 12988 30 

 
Figure 28: Multi-layer application resource utilization including hardware API.  

 
Multipliers and Block Ram components are deterministic and easily predicted. In contrast, logic utilization 
proved difficult to predict accurately for all parameterizations. We synthesized the same network at various 
neighborhood window sizes and results are presented in Figure 29. Investigating the accuracy beyond 9 by 
9 was not investigated due to lack of hard multiplier cores. 
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As shown in Figure 29 there is a significant difference between our predicted resource usage and the 
observed usage for small window sizes. Accurate resource prediction is difficult in RCC implementations 
due to the long vendor specific tool chain used to synthesize designs. We hypothesize that unpredictable 
packing of logic elements (utilizing both the look-up-table and the flip-flop within each cell) could be a 
significant contributor.  
 
The maximum clock speed for the design, as reported in the Xilinx timing report, was 103MHz. Figure 30 
provides a breakdown of execution time for the various hardware and software components. Of theoretical 
interest is the RCC pipeline execution time which was approximately 742x faster than the Pentium 4 
3.18GHz implementation. Of more practical interest is sub-network speed-up when the host / RCC 
communication and RCC specific data processing is included. RCC specific data processing includes all 
computations that would not be required in a software implementation and includes packing and unpacking 
image data into DMA memory buffers. We estimate speed-up at 102x the Pentium. The final quantity of 
interest is the speed-up obtained for the complete application. The additional network layers took 
approximately one third of a second to execute in software. The application speed-up obtained by using 
hardware and software was approximately 9.6x software. 

Figure 29: Multi-layer network example. Left) Output images from processing layers and b) hardware 
components used in the design. 

 P4 3.18GHz (s) RCC (s) 100MHz 
 

Speed-up (x) 
Hardware Pipeline 2.969 0.004 742 
Communication - 0.010  
Data Preparation - 0.015  
Sub-Total  2.969 0.029 102 
Software layers 0.313 0.313  
Complete Application 3.282 0.342 9.6 

 
Figure 30: Processing times for Application I with and without RCC.  

 



6.2 Application II  
 
The second application example extends the previous network by adding additional processing layers to the 
hardware sub-network. This example uses multi-scale processing components and time-multiplexed 
resource sharing. Example output images from the network are shown in Figure 31a (images have been 
rotated for clarity). This application uses the same software processing layers that were used in application 
1 and similar learning strategies. A population of 20 candidates evolved for 20 generations to solve the 
second problem in figure 27: detect all people in the image.  
 
The hardware sub-network is shown in figure 31b. The outputs from the first four threshold functions are 
down sampled by sub_sampler/mixer component. This produces a single stream with no redundancy. 
A 9 by 9 window function and threshold is then applied to each of the four streams with four different sets 
of parameters. The window and sub-param components are instantiated with a sample ratio of two. The 
time multiplexed results from the threshold function are then split into four redundant streams and 
then up-sampled via linear interpolation. The four up-sampled images are then combined with the original 
thresholded outputs (all eight images shown in figure 31a are combined) with a linear layer, and a final 
threshold. This shows how local dependencies between image data at different scales can be exploited in a 
single pass.  
 

 
Figure 32 shows the resource utilization for this pipeline within the Harpo framework. The Xilinx timing 
tool reported a maximum clock frequency of 68MHz. This is almost half the clock rate reported for 
individual pipeline components. The precise bottleneck in the design was difficult to determine but we 
hypothesize place and route tools had difficulty with the high percentage of dedicated multipliers in 
combination with the modest slice utilization.  
 

 

 
Figure 31: Multi-scale application. a) Output images from processing layers and b) hardware components used 

in the design. 



 Number of Resources % Utilization 
Observed   
MULT18x18s 417 93 
RAMB16s 22 4 
Slices 29023 65 

 
The speed-up of the RCC implementation compared to the software implementation is summarized in 
Figure 33. Since communication and data preparation account for over 80% of the execution time, the 
slower 66MHz clock rate had little affect on performance.  

 Figure 32: Measured and predicted resource usage for multi-scale application. 

 P4 3.18GHz (s) RCC (s) 66MHz 

 
 

Speed-up (x) 
Hardware Pipeline 3.860 0.006 643 
Communication - 0.010  
Data Preparation - 0.015  
Sub-Total  3.860 0.031 124 
Software layers 0.313 0.313  
Complete Application 4.173 0.344 12.2 

 
Figure 33: Processing times for Application II with and without RCC. 

 
Harpo’s performance on both applications is encouraging. We successfully generated hardware sub-
networks which utilized a significant portion of the FPGA and achieved significant end-to-end acceleration 
of the application. The performance gains are due to the extensive use of pipelining which provides 
significant parallelism with minimal communication overhead. For example, even though the pipeline 
efficiency of Application II was smaller than Application I due to increased latency and lower clock speeds 
the application level speed-up was greater.  
 
7.0 Conclusion 
 
Multi-scale network topologies vary greatly from one application to the next and it can be difficult to 
exploit parallelism with general purpose accelerators. Harpo enables a seamless transition between streams 
of image data at different scales through a number of parameterized hardware components. Data can be 
channeled through any number of processing elements, split, joined, or sampled in virtually any number of 
ways. This provides a rich design space to trade data throughput, latency and area. RCC is an ideal match 
for this framework since it can tailor the data-paths for each application to ensure redundancy is minimized 
and computational units are 100% utilized. 
 
The Harpo system provides tools to semi-automate the process of mapping networks to reconfigurable 
hardware. The specification file, and particularly our approach to the time domain, helps make this possible 
by forcing the user to model the data flow used in the hardware implementation. For example, memory 
bandwidth is explicitly allocated in the specification file via the Buffer processing layer. In future work 
we hope to investigate how design space tradeoffs can be included in the automated generation of hardware 
pipelines and hence make the most effective use of both RCC and software resources.  
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